Heavy Metals Content in Whole Blood (Literature Review and Case Study)
DOI:
https://doi.org/10.53933/sspmpm.v2i1.41Keywords:
heavy metals, mercury, arsen, lead, toxicology, public healthAbstract
Heavy metals content in whole blood was analyzed for Kyiv city residents, who were tested in 2019-2020 years. According to obtained results, the metals were divided into three group. 1) with elevated concentration in statistical sample and elevated threshold (mercury and arsenic); 2) with elevated concentrations for several patients while average concentration for sample did not exceed threshold (lead); 3) with single cases of increased concentrations that are not a risk to the health of the population, but pose a threat to a particular patient (Bi, Cd, Cr, Mo, Cs, Va). Some metals never exceeded the maximum allowable concentrations Al, Ba, Be, Au, Co, Cu, Mn, Ni, Pd, Pt, Sr, Ti, U, Zr). We recommend regular check-up for the concentrations of mercury and arsenic in blood, because these metals are the factors of population risk. When the metals concentrations in blood are elevated, the diagnosis should be established taking into account clinical history of the patient.
References
Lim J., Tan Y., Valeri L. et al. Association between serum heavy metals and prostate cancer risk - a multiple metal analysis. Environ Int. 2019. N. 132. P.105109. DOI: 10.1016/j.envint.2019.105109. DOI: https://doi.org/10.1016/j.envint.2019.105109
Jain M., Kalsi A., Srivastava A. et al. High serum estradiol and heavy metals responsible for human spermiation defect-a pilot study. J Clin Diagn Res. 2016. Vol. 10. N.12. P.RC09-RC13. DOI: 10.7860/JCDR/2016/22483.8990. DOI: https://doi.org/10.7860/JCDR/2016/22483.8990
Zheng G., Wang L., Guo Z. et al. Association of serum heavy metals and trace element concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population. Biol Trace Elem Res. 2015. Vol. 167. N. 1. P. 1-10. DOI: 10.1007/s12011-015-0294-7. DOI: https://doi.org/10.1007/s12011-015-0294-7
Kolusari A., Kurdoglu M., Yildizhan R. et al. Catalase activity, serum trace element and heavy metal concentrations, and vitamin A, D and E levels in pre-eclampsia. J Int Med Res. 2008. Vol.36. N.6. P.1335-1341. DOI: 10.1177/147323000803600622. DOI: https://doi.org/10.1177/147323000803600622
Yılmaz B., Evliyaoğlu Ö., Yorgancı A. et. al. Serum concentrations of heavy metals in women with endometrial polyps. J Obstet Gynaecol. 2020. Vol. 40. N. 4. P. 541-545. DOI: 10.1080/01443615.2019.1634022. DOI: https://doi.org/10.1080/01443615.2019.1634022
Heo J., Park H., Hong Y. et al. Serum heavy metals and lung function in a chronic obstructive pulmonary disease cohort. Toxicol. Environ. Health Sci. 2017. N. 9. P. 30–35.
URL: https://doi.org/10.1007/s13530-017-0300-x. DOI: https://doi.org/10.1007/s13530-017-0300-x
Rokadia H., Agarwal S. Serum heavy metals and obstructive lung disease: results from the National Health and Nutrition Examination Survey. Chest. 2013. Vol. 143. N. 2. P.388-397. DOI: 10.1378/chest.12-0595. DOI: https://doi.org/10.1378/chest.12-0595
Prystupa A., Błażewicz A., Kiciński P. et al. Serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis from the Lublin Region in Eastern Poland. Int J Environ Res Public Health. 2016. Vol. 13. N. 6. P. 582. DOI: 10.3390/ijerph13060582. DOI: https://doi.org/10.3390/ijerph13060582
Jose A., Ray J. Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala, South India. Environ Sci Pollut Res Int. 2018. Vol. 25. N.8. P.7946-7953. DOI: 10.1007/s11356-017-1112-x. DOI: https://doi.org/10.1007/s11356-017-1112-x
Schultze B., Lind M., Larsson A. et al. Whole blood and serum concentrations of metals in a Swedish population-based sample Scandinavian Journal of Clinical & Laboratory Investigation. 2014. N. 74. P. 143–148. DOI: 10.3109/00365513.2013.864785. DOI: https://doi.org/10.3109/00365513.2013.864785
Colle D., Santos D., Moreira E. et al. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS ONE. 2013. Vol. 8. N. 6. P.e67658. URL: https://doi.org/10.1371/journal.pone.0067658. DOI: https://doi.org/10.1371/journal.pone.0067658
Gentry P.R., McDonald T.B., Sullivan D.E. et al. Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity. Environ Mol Mutagen. 2010. Vol. 51. N. 1. P. 1-14. DOI: 10.1002/em.20505. DOI: https://doi.org/10.1002/em.20505
Gillis B.S., Arbieva Z., Gavin I.M. Analysis of lead toxicity in human cells. BMC Genomics. 2012. N. 13. P. 344. URL: https://doi.org/10.1186/1471-2164-13-344. DOI: https://doi.org/10.1186/1471-2164-13-344
Tollefsen K., Scholz S., Cronin M. et al. Applying adverse outcome pathways to support integrated approaches to testing and assessment. Regulatory Toxicology and Pharmacology. 2014. Vol. 70. N. 3. P.629-640. URL: https://doi.org/10.1016/j.yrtph.2014.09.009. DOI: https://doi.org/10.1016/j.yrtph.2014.09.009
Stern A.H., Bagdon R.E., Hazen R.E. et al. Risk assessment of the allergic dermatitis potential of environmental exposure to hexavalent chromium. J Toxicol Environ Health. 1993. Vol. 40. N. 4. P. 613-41. DOI: 10.1080/15287399309531822. DOI: https://doi.org/10.1080/15287399309531822
Leussink B.T., Nagelkerke J.F., Water B. et al. Pathways of proximal tubular cell death in bismuth nephrotoxicity. Toxicol Appl Pharmacol. 2002. Vol. 15. N. 2. P. 100-109. DOI: 10.1006/taap.2002.9379. DOI: https://doi.org/10.1006/taap.2002.9379
Melnikov P., Zanoni L. Clinical effects of cesium intake. Biol Trace Elem Res. 2010. Vol. 135. N. 1-3. P. 1-9. DOI: 10.1007/s12011-009-8486-7. DOI: https://doi.org/10.1007/s12011-009-8486-7
Barceloux D.G. Vanadium. J Toxicol Clin Toxicol. 1999. Vol. 37. N. 2. P. 265-78. DOI: 10.1081/clt-100102425. DOI: https://doi.org/10.1081/CLT-100102425
Garcia-Reyero N., Kennedy A., Escalon B. et al. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol. 2014. Vol. 48. N. 8. P. 4546–4555. DOI: https://doi.org/10.1021/es4042258
Rogowska J., Olkowska E., Ratajczyk W. et al. Gadolinium as a new emerging contaminant of aquatic environments. Environ Toxicol Chem. 2018. Vol. 37. N. 6. P. 1523-1534. DOI: 10.1002/etc.4116. DOI: https://doi.org/10.1002/etc.4116
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Olena Bezkrovna, Irina Skorokhod, Lesya Zakrutko
This work is licensed under a Creative Commons Attribution 4.0 International License.