COVID-19 Pandemic Encourages to Deepen the Study of the Thyroid Gland: Correlation Portraits as a Means of Research in Different Directions of Follicular Thyrocytes Activities

Authors

DOI:

https://doi.org/10.53933/sspmpm.v2i1.40

Keywords:

COVID-19, thyroid gland, hypothyroidism, hyperthyroidism, mathematical methods of thyroid research

Abstract

In COVID-19, the thyroid gland can play a significant role both in the clinical course of the disease and in the processes of postcovid recovery. Based on the importance of the thyroid gland for the vital functions of the body, information on the etiology of the most common types of thyroid pathology is considered. It is established that the disclosure of the deep essence of the processes occurring in the thyroid gland in normal and pathology is possible on the basis of innovative use of correlation analysis with the designing of correlation portraits to study the main activities of follicular thyrocytes.

References

COVID-19 – Coronavirus Pandemic: Coronavirus Statistics. Worldometer. Last updated: January 20, 2022, 12:36 GMT. URL: https://www.worldometers.info/coronavirus/.

Hariyanto T.I., Kurniawan A. Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr. 2020. Vol. 14. Iss. 5. P. 1429–1430. DOI: 10.1016/j.dsx.2020.07.044. DOI: https://doi.org/10.1016/j.dsx.2020.07.044

Melo G.M., Gonçalves A.J., Walder F. et al. Analysis of the status of treatment of benign thyroid diseases – a public health problem aggravated in the COVID-19 pandemic era. Braz J Otorhinolaryngol. 2021. Article S1808-8694(21)00170-1. DOI: 10.1016/j.bjorl.2021.08.008. DOI: https://doi.org/10.1016/j.bjorl.2021.08.008

Kogan E.A., Berezovsky Yu.S., Protsenko D.D. et al. Pathological anatomy of infection caused by SARS-CoV-2. Russian Journal of Forensic Medicine. 2020. Vol. 6. Iss. 2. P. 8–30. DOI: 10.19048/2411-8729-2020-6-2-8-30. DOI: https://doi.org/10.19048/2411-8729-2020-6-2-8-30

Aguiar D., Lobrinus J. A., Schibler M. et al. Inside the lungs of COVID-19 disease. Int J Legal Med. 2020. Vol. 134. No. 4. P. 1271–1274. DOI: 10.1007/s00414-020-02318-9. DOI: https://doi.org/10.1007/s00414-020-02318-9

Pomara C., Volti G. L., Cappello F. COVID-19 Deaths: Are We Sure It Is Pneumonia? Please, Autopsy, Autopsy, Autopsy! J Clin Med. 2020. Vol. 9. No. 5. P. 1259. DOI: 10.3390/jcm9051259. DOI: https://doi.org/10.3390/jcm9051259

Su H., Yang M., Wan C., Yi L et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020. Vol. 98. No. 1. P. 219–227. DOI: 10.1016/j.kint.2020.04.003. DOI: https://doi.org/10.1016/j.kint.2020.04.003

Bansal M. Cardiovascular disease and COVID-19. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020. Vol. 14. No. 3. P. 247–250. DOI: 10.1016/j.dsx.2020.03.013. DOI: https://doi.org/10.1016/j.dsx.2020.03.013

Chen T., Wu D., Chen H. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospectivestudy. BMJ. 2020. Vol. 368. Article m1295. DOI: 10.1136/bmj.m1295. DOI: https://doi.org/10.1136/bmj.m1295

Feghali K., Atallah J., Norman C. Manifestations of thyroid disease post COVID-19 illness: Report of Hashimoto thyroiditis, Graves’ disease, and subacute thyroiditis. Clin Transl Endocrinol Case Rep. 2021. Vol. 22. Article 100094. DOI: 10.1016/j.jecr.2021.100094. DOI: https://doi.org/10.1016/j.jecr.2021.100094

Scappaticcio L., Pitoia F., Esposito K. et al. Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord. 2020. Vol. 22. No 4. P. 803–815. DOI: 10.1007/s11154-020-09615-z. DOI: https://doi.org/10.1007/s11154-020-09615-z

Franceschi C., Ostan R., Mariotti S. et al. The agingthyroid: A reappraisal within the geroscience integrated perspective. Endocr Rev. 2019. Vol. 40. No 5. P. 1250–1270. DOI: 10.1210/er.2018-00170. DOI: https://doi.org/10.1210/er.2018-00170

Bao R., Hernandez K., Huang L., Luke J.J. ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19. J Immunother Cancer. 2020. Vol. 8. No 2. Article e001020. DOI: 10.1136/jitc-2020-001020. DOI: https://doi.org/10.1136/jitc-2020-001020

Li M.Y., Li L., Zhang Y. et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020. Vol. 9. No 1. Article 45. DOI: 10.1186/s40249-020-00662-x. DOI: https://doi.org/10.1186/s40249-020-00662-x

Murugan A.K., Alzahrani A.S. SARS-CoV-2: Emerging role in the pathogenesis of various thyroid diseases. J Inflamm Res. 2021. No 14. P. 6191–6221. DOI: 10.2147/JIR.S332705. DOI: https://doi.org/10.2147/JIR.S332705

Ryabukha O.І. Body weight as an indicator of the organism’s general condition while receiving iodine of organic and inorganic chemical origin under conditions of the optimal iodine supplementing. Bulletin of problems in biology and medicine. 2018. Iss. 1. No 1(142). P. 97–102. DOI: 10.29254/2077-4214-2018-1-1-142-97-102. DOI: https://doi.org/10.29254/2077-4214-2018-1-1-142-97-102

Ryabukha O., Dronyuk I. Applying regression analysis to study the interdependence of thyroid, adrenal glands, liver, and body weight in hypothyroidism and hyperthyroidism. CEUR Workshop Proceedings-Series. 2019. Vol. 2488. P. 155–164. URL: http://ceur-ws.org/Vol-2488/paper13.PDF.

Ryabukha O, Greguš ml M. Correlation analysis as a thyroid gland, adrenal glands, and liver relationship tool for correcting hypothyroidism with organic and inorganic iodine. Procedia Comput Sci. 2019. Vol. 160. P. 598–603. DOI: 10.1016/j.procs.2019.11.041. DOI: https://doi.org/10.1016/j.procs.2019.11.041

Koubassov R.V. Hormonal changes in response to extreme environment factor. Annals of the Russian Academy of Medical Sciences. 2014. Vol. 69. No. 9–10. P. 102–109. URL: https://vestnikramn.spr-journal.ru/jour/article/view/395/335. DOI: https://doi.org/10.15690/vramn.v69i9-10.1138

Ryabukha O.I., Fedorenko V.I. Environmental determinants of thyroid pathology. Medicni perspectivi. 2021. Vol. 26. No. 3. P. 169–178. DOI: 10.26641/2307-0404.2021.3.242253 DOI: https://doi.org/10.26641/2307-0404.2021.3.242253

Menon K., Skeaff S. Iodine: Iodine Deficiency Disorders (IDD). In: B. Caballero, P.M. Finglas, F. Toldrá (ed.). Encyclopedia of Food and Health. New York: Academic Press; 2016. p.p. 437–443. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00399-8. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00399-8

Aburto N., Abudou M., Candeias V., Wu T. Effect and safety of salt iodization to prevent iodine deficiency disorders: a systematic review with meta-analyses. WHO eLibrary of Evidence for Nutrition Actions (eLENA). Geneva: World Health Organization; 2014. URL: https://www.who.int/publications/i/item/9789241508285.

Santos J.A.R., Christoforou A., Trieu K. et al. Iodine fortification of foods and condiments, other than salt, for preventing iodine deficiency disorders. Cochrane Database Syst Rev. 2019. Vol. 2. No 2. Article CD010734. DOI: 10.1002/14651858.CD010734.pub2. DOI: https://doi.org/10.1002/14651858.CD010734.pub2

Korzun V.N., Vorontsova T.O., Antoniuk I.Yu. Study of the Black Sea algae influence on thyroid function and prevention of iodine deficiency. In: V.N. Korzun (ed.). Ecology and diseases of thyroid gland. Кyiv: Medinform; 2018. p.p. 607–622.

Kravchenko V.M., Orlova V.O., Laryanovska Yu.B., Sakharova T.S. Investigation of Laminaria aqueous extract effect on thyroid gland morphological status in rats with experimental hypothyroidism induced by sodium perchlorate. Ukrayinskyy biofarmatsevtychnyy zhurnal. 2017. No. 6. P. 50–55. DOI: https://doi.org/10.24959/ubphj.17.144. DOI: https://doi.org/10.24959/ubphj.17.144

Gazha P.A, Andrianov A.M, Stepaniuk I.A et al. Isolаtion of iodine-protein components from sea algae. Prikl Biokhim Mikrobiol. 1976. Vol. 12. No. 4. P. 597–601. URL: https://www.ncbi.nlm.nih.gov/pubmed/1026942.

Ryabukha O.І. To the problem of application in hypothyrosis inorganic and organic iodine (review). Actual problems of transport medicine. 2018. No. 2. P. 7–21. DOI: 10.5281/zenodo.1319531.

Tiwari M. A mathematical applications into the cells. J Nat Sci Biol Med. 2012. Vol. 3. No. 1. P. 19–23. DOI: 10.4103/0976-9668.95937. DOI: https://doi.org/10.4103/0976-9668.95937

Riabukha O. Application of new information technologies for the study of cell activity. In: Proceedings of the XIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH); 2015 Sep 2-6; Lviv, Ukraine. New York (NY), United States: IEEE; 2015. P. 69-71. URL: http://ieeexplore.ieee.org/document/7299458.

Ryabukha O.I, Dronyuk I.M. Application of correlation analysis in cytology: Opportunities to study specific activity of follicular thyrocytes. Regulatory Mechanisms in Biosystems. 2019. Vol. 10. No 3. P. 345–351. DOI: 10.15421/021953. DOI: https://doi.org/10.15421/021953

Zadeh L. A. The roles of fuzzy logic and soft computing in the conception, design and deployment of intelligent systems. BT Technology Journal. 1994. Vol. 14. No 4. P. 32–36. DOI: 10.1109/FUZZY.1997.616336. DOI: https://doi.org/10.1109/FUZZY.1997.616336

Avtandilov G. G. Basis of quantitative pathological anatomy. Moscow: Meditsina; 2002.

Avtandilov G.G.: Medical morphometry: A guide. Moscow: Meditsina; 1990.

Ryabukha O.I. Conceptual approaches to the study of the thyroid gland at different levels of its integration into the body. Endocrinology and Disorders. 2020. Vol. 4. Iss.1. DOI: 10.31579/2640-1045/047. DOI: https://doi.org/10.31579/2640-1045/047

Ryabukha O.I. Perspectives of applying new approaches to the implementation of mathematical technologies in the study of cell activity. Medical Informatics and Engineering. 2018. No. 1. P. 67–75. DOI: 10.11603/mie.1996-1960.2018.1.8894. DOI: https://doi.org/10.11603/mie.1996-1960.2018.1.8894

Ryabukha O., Dronyuk I. The portraits creating method by correlation analysis of hormone-producing cells data. CEUR Workshop Proceedings-Series. 2018. Vol. 2255. P. 135–145. URL: http://ceur-ws.org/Vol-2255/paper13.pdf.

Plashchevaya E.V., Smirnov V.A., Nigei N.V., Lysak V.A. The main types of medical logic. In: Textbook for practical training in medical informatics. Blagoveshchensk: Amur State Medical Academy, 2014. p. 176.

Dev U., Sultana A., Saha D., Mitra N. Application of Fuzzy logic in medical data interpretation. Bangladesh Journal of Scientific and Industrial Research. 2015. Vol. 49. No. 3. P. 137–146. DOI: 10.3329/bjsir.v49i3.22127. DOI: https://doi.org/10.3329/bjsir.v49i3.22127

Ryabukha O. Innovative model for studying the features of hormono-poietic cells functioning based on characteristics of different aspects in their activity (as examplified by follicular thyrocytes). In: Scientific basis of modern medicine: collective monograph. Boston: Primedia eLaunch, 2020. pp. 171–181. DOI: 10.46299/isg.2020.MONO.MED.I. DOI: https://doi.org/10.46299/isg.2020.MONO.MED.I

Mintser O.P., Karlenko V.P., Shevchenko Ya.О., Sukhanova О.О. Clusterization of functional states of the organism. Pilot study. Medical Informatics and Engineering. 2021. No. 2. P. 4-13. DOI: 10.11603/mie.1996-1960.2021.2.12449. DOI: https://doi.org/10.11603/mie.1996-1960.2021.2.12449

Uurtio V., Monteiro J.M., Kandola J. et al. A Tutorial on Canonical Correlation Methods. ACM Computing Surveys. 2018. Vol. 50. No. 6. Article 95. DOI: 10.1145/3136624. DOI: https://doi.org/10.1145/3136624

Koterov A.N., Ushenkova L.N., Zubenkova E.S. et al. Strength of association. Report 2. Graduations of Correlation Size. Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 6. P. 12–24. DOI: 10.12737/1024-6177-2019-64-6-12-24. DOI: https://doi.org/10.12737/1024-6177-2019-64-6-12-24

Caplan M.J. Functional organization of the cell. In: W. F. Boron, E. L. Boulpaep (Eds.). Medical Physiology, 3rd ed. Philadelphia: Elsevier; 2016. pp. 8–46.

Giorgi C., De Stefani D., Bononi A. et al. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol. 2009. Vol. 41. No. 10. P. 1817–1827. DOI:10.1016/j.biocel.2009.04.010. DOI: https://doi.org/10.1016/j.biocel.2009.04.010

Kirsten D. The thyroid gland: physiology and pathophysiology. Neonatal Netw. 2000. Vol. 19, No 8. P. 11–26. DOI: 10.1891/0730-0832.19.8.11. DOI: https://doi.org/10.1891/0730-0832.19.8.11

Ryabukha O.I. Search for markers of changes of the synthetic activity of thyrocyte under the influence of iodine reception in iodine deficiency conditions. World of Medicine and Biology. 2018. No. 3. P. 179–185. DOI: 10.26724/2079-8334-2018-3-65-179-185. DOI: https://doi.org/10.26724/2079-8334-2018-3-65-179-185

Ryabukha O.I. Application of mathematical approaches in medicine on the example of follicular thyrocytes secretory activity study. World of Medicine and Biology. 2019. No 1. P. 181–187. DOI: 10.26724/2079-8334-2019-1-67-181. DOI: https://doi.org/10.26724/2079-8334-2019-1-67-181

Ryabukha O., Dronyuk I. Modern аpproaches to the applying of mathematical methods in the analysis of the transport direction of follicular thyrocytes. CEUR Workshop Proceedings-Series. 2021. Vol. 3038. P. 302–316. URL: http://ceur-ws.org/Vol-3038/paper19.pdf.

Downloads

Published

2022-02-01

How to Cite

Ryabukha, O. (2022). COVID-19 Pandemic Encourages to Deepen the Study of the Thyroid Gland: Correlation Portraits as a Means of Research in Different Directions of Follicular Thyrocytes Activities. SSP Modern Pharmacy and Medicine, 2(1), 1–21. https://doi.org/10.53933/sspmpm.v2i1.40

Issue

Section

Health Sciences. Medicine